Commentary

Temporal complementarity of information-based leadership

Stéphan G. Reebs
Département de Biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada

A R T I C L E   I N F O

Article history:
Received 11 January 2010
Accepted 15 March 2010

In producer–scrounger systems (Barnard and Sibly, 1981), some individuals specialize in finding food while others keep an eye on these producers with a view to share their findings. Conceivably, different individuals living in a group could have different food-finding skills, though all group members would retain the ability to join food discoverers. Thus an individual could be a producer at one time and a scrounger at another. The idea that different foraging specialists within a group could benefit from parasitizing each other’s foraging efforts has been called the skill pool hypothesis (Giraldeau, 1984; Giraldeau and Lefebvre, 1986).

A similar concept could be applied to leader and follower roles in those cases where leaders have prior knowledge of where food is likely to be found (the producing skill) and naive followers are capable of sharing that food (the scrounging role). If food availability varies spatio-temporally, it is possible for different individuals at different times to have different knowledge of the location of food. Leader and follower roles could therefore be exchanged from time to time.

The idea that leader and follower roles can be exchanged is at the core of the information centre hypothesis (Ward and Zahavi, 1973), which posits that one of the advantages of communal roosts or breeding colonies in birds is to increase foraging efficiency via the reciprocal exchange of information about ephemeral food locations. For example, crows could forage individually or in small bands during the day, but join a large roost at night. Individuals that foraged unsuccessfully during the previous day could try to follow successful foragers upon leaving the roost the next morning in the hope of joining them at the carcass they have found. Successful foragers could be identified based on their physical condition or the eagerness of their departure flight. There might not be any advantage to the leaders being followed that would sufficiently offset the cost of having to share their food (though one possibility would be the anti-predatory benefits of being part of a group at the feeding site), but if the chances of finding food are more or less uniform across the population, then the leaders of today may still benefit overall from joining the roost because in the near future they may become followers. In a kind of reciprocal altruism, the net benefit for all group members would be to reduce the chance of suffering extended periods without food.

Certain pitfalls have to be borne in mind when testing the information centre hypothesis against other hypotheses that make similar predictions (Bayer, 1982; Evans, 1982; Mock et al., 1988; Danchin and Richner, 2001; Mock, 2001). There is a fair amount of evidence in birds that unsuccessful foragers follow successful ones (De Groot, 1980; Loman and Tamn, 1980; Brown, 1986; Greene, 1987; Rabenold, 1987; Waltz, 1987; Heinrich, 1988, 1994; Marzluff et al., 1996; Sonerud et al., 2001; but see Andersson et al., 1981; and for examples concerning bat roosts, see Wilkinson, 1992; Kerth and Reckardt, 2003). However, there is little if any evidence that one individual switches leader and follower roles depending on its knowledge of food availability (for possible exceptions, see Brown, 1986; Wilkinson, 1992; Marzluff et al., 1996). Intuitively, reciprocal exchange of information seems likely, but it has not been confirmed. Part of the difficulty, at least in the context of bird roosts and colonies, resides in identifying individuals in the field.

Fish shoals represent another system amenable to study in this regard. Naive fish are known to sometimes follow experienced individuals to the site of food or through an escape hole (Warren et al., 1975; Köhler, 1976; Sugita, 1980; Laland and Williams, 1997, 1998; Rees, 2000, 2001; Swaney et al., 2001; Brown and Laland, 2002; Reader et al., 2003; Dyer et al., 2009). Shoal composition can be fluid in nature (Helfman, 1984), which means that at any one time different individuals may have different knowledge about where and when food is available. Leadership based on information could therefore change from day to day, or even within the same day. However, I am not aware of any field data reporting switches between leader and follower roles according to information status in moving fish shoals. Here, the difficulty resides not only in identifying individuals, but also in observing fish shoal movements under natural conditions.

In a set of preliminary experiments, I have taken these questions to the laboratory. I work with the golden shiner, Notemigonus crysoleucas, a gregarious cyprinid that roams widely within lakes (Hall et al., 1979) in shoals of 8–250 individuals (Krause et al., 1996). In a large tank (1.2 m × 1.8 m, or approximately 15 × 23 fish...
But if the shoals are made up of a mixture of trained and naïve individuals, the notion of leadership makes sense only when leadership is based on predatory risk may be indicated.

If seven trained, three afternoon-trained, and six naïve fish), there were more fish in the afternoon corner during the afternoon, consistent with the idea of temporally complementary leadership. However, shoals often split, and there were often a few individuals in the afternoon corner during the morning, or in the morning corner during the afternoon. In other words, the results were not as clear cut as one might have liked. This experimental paradigm would benefit from some tweaking to make sampling of the wrong corner, as well as shoal splitting, more costly. The introduction of some kind of predatory risk may be indicated.

It is worth pointing out that the notion of temporal complementarity in leadership makes sense only when leadership is based on information. The word “complementarity” implies some advantage to the switching leader and follower roles, and it is difficult to find such an advantage when leading is based on hunger, exploratory impulse, or intrinsic activity levels (Rands et al., 2003). For example, fish and other animals may occupy leadership positions more often when hungry (Krause et al., 1992, 2000; Krause, 1993, 1994) and so leader and follower roles may alternate as the animals switch between being hungry and satiated (Krause, 1993; Krause et al., 2000), but there is no functional benefit to the animals in the alternation per se. In fact, the notion of complementarity makes sense only when specific benefits can be assigned not only to the leaders (for example, wanting to get to a known source of food) but also to the followers (for example, paratising the leader’s knowledge). Thus the application of the skill pool hypothesis and information center hypothesis to the study of leadership teaches us to pay attention not only to the motivation of the leaders, but also to that of the followers.

References